
PIE: A Dynamic Failure-Based Technique�

Je�rey M. Voas, Member, IEEE

Abstract

This paper presents a dynamic technique for statistically estimating three program characteristics

that a�ect a program's computational behavior: (1) the probability that a particular section of a

program is executed, (2) the probability that the particular section a�ects the data state, and (3)

the probability that a data state produced by that section has an e�ect on program output. These

three characteristics can be used to predict whether faults are likely to be uncovered by software

testing.

Index Terms: Software testing, data state, fault, failure, testability.

1 Introduction

Software testing has several advantages over other veri�cation forms: it relies on less formal
analysis than a technique such as proof of correctness, it replicates operational behavior, and

it has a statistical basis. However, software testing has drawbacks: any predictions based on
software testing depend on an assumed input distribution. If the assumed input distribution

is inaccurate, or if the input distribution changes over time, any predictions based on software
testing can be invalidated. When testing reveals a failure, it provides little help in locating the
fault. Finally, testing requires an oracle; since automated oracles are rarely available, human

oracles who require time and sometimes get the wrong results (which misleads testers) are

required.

The technique described in this paper complements software testing. The technique, called
propagation, infection, and execution analysis (or PIE analysis) [25], is closely related to fault-
based testing [16, 15, 17, 18, 3, 24, 27] and mutation testing [4, 5, 2, 22, 7, 19, 20]. PIE analysis

is distinct from both mutation testing and fault-based testing because PIE analysis collects

information concerning the semantics of the program; fault-based testing collects information

concerning whether certain classes of faults exist in a program; and mutation testing judges
whether sets of inputs are adequate at catching faults. The technique PIE analysis does not

reveal the existence of faults; correctness is never an issue. Nor does the technique directly

evaluate the ability of inputs to reveal the existence of faults. Instead, PIE analysis identi�es
locations in a program where faults, if they exist, are more likely to remain undetected during

testing. A location in PIE analysis is: an assignment, input statement, output statement, or
the <condition> part of an if or while statement.

�This paper was written while author was supported by a National Research Council Nasa-Langley Resi-

dent Research Associateship. Since writing this article, author as accepted a position at: Reliable Software

Technologies Corporation, Penthouse Suite, 1001 N. Highland Street, Arlignton, VA 22201.

1

PIE analysis requires no oracle and no speci�cation. No oracle is needed because this is
not a veri�cation technique. PIE analysis does require an input distribution. PIE analysis
uses program instrumentation, syntax mutation, and changed values injected into data states

to predict a location's ability to cause program failure if the location were to contain a fault.

The program inputs are selected at random consistent with an assumed input distribution. This

analysis does not require a testing oracle because PIE analysis uses the program itself as an
oracle for examining the output of altered versions of the program.

The technique measures the e�ect that a location of the program has on the program's

dynamic computational behavior when:

1. The program is executed with inputs selected from a particular input distribution. This

estimates the frequency with which inputs execute the location.

2. The location is mutated via syntactic mutants. This estimates the frequency with which

mutants of the location create altered data states.

3. The data state created by the location has a value in it changed. This estimates the

frequency with which altered data states cause a change in the program's output.

Since these scenarios dynamically simulate the three necessary and su cient conditions for

software failure to occur, PIE analysis is a dynamic failure-based technique.
The remainder of this paper is organized as follows: x2 describes the theoretical model that

PIE analysis is based on; the PIE analysis technique that implements this model is presented
in x3. x4 presents an application of PIE analysis, and x5 presents results using the PIE analysis
technique.

or tic od

.1 e eral e itio s

We view a program as an implementation of a function g that maps a domain of possible inputs

to a range of possible outputs. Another function with the same domain and perhaps di�erent

range represents the desired behavior of g. An oracle is a recursive predicate on input-output

pairs that checks whether or not has been implemented for an input, i.e., oracle !(x; y) is

T i� (x) = y. Then the oracle is used with g(x) for y. uring testing, it is necessary to be

able to say whether a particular output of a program is correct or incorrect for a particular input
x, with the latter implying that g(x) = (x), and the former implying that g(x) = (x). The

failure probability of program , with respect to an input distribution , �P , is the probability

that produces an incorrect output for an input selected at random according to .
In PIE analysis, it is necessary to uniquely identify speci�c syntactic program constructs

as well as the internal data states created during execution. To uniquely identify syntactic
constructs, we de�ne a location to be either an assignment statement, an input statement, an

output statement, or the <condition> part of a if or while statement. ur de�nition for

location is based on orel's [10] de�nition for a single instruction.
A program data state is a set of mappings between all variables (declared and dynamically

allocated) and their values at a point during execution; in a data state we include both the
program input used for this execution and the value of the program counter. We only identify

2

data states between two dynamically consecutive locations. The execution of a location is
considered here to be atomic, hence data states can only be viewed between locations. As an
example, the data state

(input, 3), (a, 5), (b, 5), (c, unde�ned), (pc, 10)

tells that variables a and have the value 5, the next instruction to be executed is at address
10, variable c is unde�ned, and the program input that started this execution was a 3. efore

program execution on an input begins, all variables are unde�ned.

A data state error is an incorrect variable value pairing in a data state where correctness is

determined by an assertion between locations. We refer to a data state error as an infection,

and use these two terms interchangeably. If a data state error exists, the data state and variable
with the incorrect value at that point are termed infected. A data state may have more than

one infected variable. Propagation of a data state error occurs when a data state error a�ects
the output. ancellation has occurred when the existence of a data state error is not discernible

in the program output, i.e., after viewing the output, we have no indication that a data state

error ever occurred. ancellation is commonly referred to as coincidental correctness. In this
paper, we do not look at intermediate locations for data state error cancellation; only at output
locations.

If there exists at least one input from a distribution for which a program fails, then we

say that contains a fault with respect to . ven though we may know that a fault exists in
a program, we cannot in general identify a single location as the exclusive cause of the failure.
For example, several locations may interact to cause the failure, or the program can be missing
a required computation which could be inserted in many di�erent places to correct the problem.

However, if a program is annotated with assertions about the correct data state before and after

a particular location l, and if there exists an input from such that l's succeeding data state
violates the assertion and l's preceding data state does not violate the assertion, then l contains

a fault.
In PIE analysis, it is important to be able to determine whether a particular variable at

some speci�c location of a program has any potential impact on the output computation of the

program. A variable is termed live at a particular location if this potential exists. etermination

of whether a variable is live is made statically from a ow graph that is augmented with def-use

information. Admittedly, certain variables de�ned as live via static analysis using a ow graph

containing def-use information might not be de�ned as live if our de�nition were based on the
dynamic behavior of the program [9].

. o el e itio s

This section formalizes:

1. The probability that a location is executed|an execution probability.

2. The probability that a change to the source program causes a change in the resulting

internal computational state|an infection probability.

3. The probability that a forced change in an internal computational state propagates and

causes a change in the program's output|a propagation probability.

3

To de�ne execution, infection, and propagation probabilities, we �rst introduce notation.

ecall this technique tracks data states as a program executes. It is therefore necessary to
uniquely identify a data state according to the input that the program is currently executing

on, the last location executed in the program where we are observing the data state, and which

iteration of the location we are observing this data state on (if the location is executed more

than once for this input).
et denote a speci�cation, denote an implementation of , x denote a program input,

denote the set of all possible inputs to , denote the probability distribution of , l denote a

program location in , and let i denote a particular execution (or what we term an \iteration")

of location l caused by input x. et lP ix represent the data state that exists prior to executing

location l on the ith execution from input x , and let lP ix represent the data state produced

after executing location l on the i
th execution from input x.

It is important for us to be able to group data states into sets with similar properties. For
instance, assume that location l is executed xl times by input x. Then we might want to

look at all of the data states that are created by this input immediately before l is executed or
immediately after l is executed. The following sets allow us to do so:

lPx = lP ix j 1 i xl

lPx = lP ix j 1 i xl

We further group these sets for all x :

lP = lPx j x

lP = lPx j x

We let l denote the function that is computed at a location l. The input to a function computed
at a location is a data state and the output of such a function is also a data state. Thus

lP ix

fl
� lP ix:

The execution probability lP of location l of program is simply the probability that a

randomly selected input x selected according to will execute location l.
et l represent a set of l mutants of location l: l ; l ; :::; lzl (where 1 y l)

[22, 7, 19, 20]. And let
ly

denote the function computed by mutant l . The infection

probability
ly lP of mutant l is the probability that the succeeding data state of location l

is di�erent than the succeeding data state that mutant l creates, given that l and l execute

on a data state that would normally precede l (one that would be created by a randomly selected
input according to).

We de�ne a simulated infection as a changed value forced into the value of some variable

(that already had a value) in a data state. As we have already stated, lP ix denotes the data
state created after the i

th iteration of location l on input x; �
lP ix denotes this same data state

after a simulated infection is injected into lP ix. A simulated infection a�ects a single live
variable.

The propagation probability ailP for a simulated infection a�ecting variable in the i
th

data state succeeding location l (where this data state is created by a randomly selected input
x according to) is the probability that 's output di�ers (from what would normally be

produced) after execution is resumed using the simulated infection.

4

ti tion o t or tic od

We can estimate the previous three probabilities using a set of program inputs that are selected

at random according to . Three analyses are used for estimating the execution probability,

infection probability, and propagation probability: xecution analysis, Infection analysis, and

ropagation analysis. These methods are the focus of x3 and collectively are termed PIE

analysis.

efore we describe these analyses, we assume several properties about any program under-

going PIE analysis as well as knowledge about the program's environment:

1. The program is close to being correct, meaning that it compiles and is believed to be close

to a correct version of the speci�cation both semantically and syntactically; this essentially
is the competent programmer hypothesis [22]. If this property is not met, PIE analysis will

still deliver estimates; however, the estimates will be of less signi�cance. The closeness is

required because the con�dence in the applicability of the resulting estimates diminishes
as we move further away from the assumption.

2. A distribution of inputs, , is available from which we can sample.

3. The inputs that we sample are only from .

4. The cardinality of is e�ectively in�nite for sampling purposes. Although there are

�nitely many numbers representable on a computer, we will assume this �xed number
exceeds what can be exhaustively sampled from during testing.

.1 ec tio A al sis

xecution analysis is a method that is based on program structure. As such, execution analysis
is related to structural testing methods. Structural testing methods attempt to cover speci�c

types of software structure with at least one input. For example, statement testing is a structural

testing method that attempts to execute every statement at least once; branch testing is a
structural testing method that attempts to execute each branch at least once. Execution analysis

estimates the probability of executing a particular location when inputs are selected according
to a particular input distribution.

Statement testing and branch testing are weak criteria because their satisfaction does not

ensure failure should a fault exist. xecuting a statement during statement testing and not
observing program failure merely provides one data point for estimating whether or not the

statement contains a fault. xecution analysis bene�ts structural testing methods by indicating
the likelihood of executing a particular statement.

Execution nalysis estimates execution probabilities. The execution estimate of execution

probability lP is denoted by l̂P |it is found by �nding the proportion of inputs (selected
according to) that cause location l is executed. As will be discussed further in x3.5, a

potential exists for inputs that are selected according to to appear to cause non-terminating
computations. For this reason, if a non-terminating computation is suspected, a mechanism

within execution analysis will be required that will terminate execution analysis on that input

(meaning that input will be ignored). This situation may cause the resulting execution estimates
to be a function of some input distribution other than , but regardless, such a mechanism is

needed.

5

. ectio A al sis

Infection analysis is similar to the processes employed in fault-based testing. ault-based testing

aims at demonstrating that certain faults are not in a program. orell [18, 16, 15, 17, 3]
proves properties about fault-based strategies concerning certain faults that can and cannot

be eliminated using fault-based testing. Since fault-based testing restricts the class of possible
faults, the possible testing is limited. Fault-based testing de�nes faults in terms of their syntax.

Fault-based testing also evaluates inputs based on their ability to distinguish the speci�c

faults. utation testing [22, 7, 19, 20] is a fault-based testing strategy that does just this|
it evaluates program inputs. It takes a program and produces versions (mutants) of ,

[; ; :::;], that are syntactically di�erent from . The goal of strong mutation testing [22]

is to �nd a set of inputs that distinguishes the mutants from .
Another variant of mutation testing, weak mutation testing [7], selects inputs that cause

all imagined infections to be created by a possibly in�nite set of mutants. Infection analysis
statistically measures the e�ect a set of mutants have on data states. Syntactic changes are
made to program locations and infection analysis �nds the probability that a particular mutant

a�ects a data state.
Infection analysis estimates an infection probability for each mutant l l. The estimate

of some infection probability
ly lP is termed an infection estimate and is denoted by ^

lylP |
it is found by the following algorithm:

1. Set variable c to 0.

2. andomly select an input x according to , and if halts on x in a �xed period of
time, �nd the corresponding lPx in lP . (x3.5 explains how to handle the possibly

non-recursive and in�nite nature of lP). niformly select a data state from lPx.

3. resent the original location l and the mutant l with data state and execute both
locations in parallel.

4. ompare the resulting data states and increment c when l() =
ly
().

5. epeat steps 2-4 times.

6. ivide c by yielding the sample mean of
number of times that fl f

ly ; this is

our ^
lylP .

The mutants that have been used in this research have been limited to mutants of arith-
metic expressions and predicates. For arithmetic expressions, the mutants considered in our

research are limited to single changes to a location|this is similar to the mutations used in

mutation testing [22, 7, 19, 20]. ur assignment statement mutants are: (1) a wrong variable
substitution, (2) a variable substituted for a constant, (3) a constant substituted for a variable,

(4) expression omission, and (5) a wrong operator. For boolean predicates, our mutants are:
(1) substituting a wrong variable, (2) exchanging a and , and (3) substituting a wrong

equality inequality operator. We have purposely limited the syntactic changes to single changes

to avoid the explosion that occurs in the number of combinatorial changes that could be made
at each location.

6

ne di culty with mutants is determining semantic equivalence between the mutant and
the original location. In infection analysis, we have handled this problem as follows: If we ever
receive a 0.0 infection estimate, we statically trace the code to attempt to determine whether

any data state will ever exist in the lPxs such that
ly
() = l(). If we do determine

semantic equivalence, we discard the mutant from the set and ignore its infection estimate. If we

determine that they are not semantically equivalent, we allow the infection estimate to stand. If
we are unable to make a determination due to circumstances such as code complexity, we allow
the infection estimate to stand.

In summary, infection analysis reveals statistical information about the e�ect that mutants

have on data states. All of the problems associated with generating mutants in mutation testing

exist in infection analysis as well. In this initial stage of our research, we have closely followed the

mutation techniques developed by [22, 7, 19, 20]; as our experience with PIE analysis increases,

we expect to gain insight into the strengths and weaknesses of di�erent mutation techniques.

. ro a atio A al sis

In this section, we discuss using simulated infections to predict the propagation of actual infec-
tions (if they exist). Propagation analysis estimates propagation probabilities. The propagation

estimate of propagation probability ailP is denoted by ^
ailP |it is found by the following

algorithm:

1. Set variable c to 0.

2. andomly select an input x according to , and if halts on x in a �xed period of time,
�nd the corresponding lPx in lP . Note that in practice, we expect that halts on each
input x in a �xed (and reasonable) amount of time. If for any input x, does not halt in

this allocated time, we ignore x and will not use any data state lP ix in this algorithm.
(x3.5 explains how to handle the possibly non-recursive and in�nite nature of lP). Set

to lP ix.

3. Alter the sampled value of variable found in creating �, and execute the succeeding
code on both � and . ossible methods for altering the value of variable are discussed

below.

4. For each di�erent result in program output after termination on � and , increment

c ; increment c if a time limit for termination related to the altered state has
been exceeded. The time limitation should be a function of the time for completion

required using the non-altered state . This precaution is necessary because of the e�ects
that altered variables can cause to boolean conditions that terminate inde�nite loops. f

course we cannot be certain that termination using the altered state � will not eventually

occur, however we must set some time limit or this algorithm might never terminate.

5. epeat steps 2-4 times.

6. ivide c by yielding the sample mean of number of times that program output di�ered;

this is our ^
ailP .

7

In propagation analysis, a simulated infection is created by a perturbation function. The
process of injecting a simulated infection is termed perturbing. A perturbation function is a
mathematical function that takes in a data state as an incoming parameter, changes it according

to certain parameters that are either input to the function or hard-wired, and produces as output

a di�erent data state. A data state that has had a value changed by a perturbation function

is said to have been perturbed. We only perturb live variables within a data state because we
already know from the de�nition of live that perturbing a variable in a data state which is not
live will result in a 0.0 propagation probability.

erturbation functions can create a wide variety of simulated infections by using a pseudo-

random number generator|we use the ehmer pseudo-random number generator with a �xed

initial seed described in [13]. To perturb, we actually insert the necessary code to cause a state

perturbation into the program under analysis. We do so by inserting a source-code module

containing the pseudo-random number generator into the code under analysis, and place a call
to this module from the location where we want a data state perturbed. We send the module

the current data state value and the module returns the perturbed data state value. To date,
we have only perturbed numeric data state values; perturbing non-numeric data state values is

an area of future research.

The decision concerning when during execution to inject a simulated infection is important to
the resulting propagation estimates. That is, during which iteration or iterations of a location
do we apply a perturbation function For example, if a location is in a loop that iterates
three times, then we can inject a simulated infection on any of the following combinations of

iterations: (1), (2), (3), (1, 2), (1, 3), (2, 3), (1, 2, 3). Note that if we do decide to inject a
simulated infection on more than one execution of a location, the simulated infection a�ects
the same variable on each iteration. We currently do not perturb on combinations of variables,
due to the explosion in the number of potential combinations. This too is an area for future

research.

The choice of how and when to apply a simulated infection depends on the type of data
state error we are simulating. ecall that propagation analysis simulates the occurrence of data
state errors, and it is important that the simulated infection mimic the real-world, i.e., we must

simulate the types of data state errors that actual faults create. For example, since faults in a
conditional location can a�ect which branch is taken after the conditional location, we include

the program counter as a live variable; this allows us to perturb the program counter by using

an enumerated type (whose members are the di�erent locations that could be executed after the

conditional location is executed) and randomly selecting a member of the type as the perturbed
program counter value. As another example, if the type of data state error being simulated can

be mapped to a type of fault that has a tendency to produce a data state error each time a

fault from this class is executed, then a perturbation function is applied in lP ix for each i. An

example is o�-by-one faults, which always infect when executed. In general, mapping simulated

infections to potential actual faults will not be possible, since potential faults are very di cult

to determine. So in our research experiments we have perturbed on each iteration (meaning we
apply a perturbation function to the current data state value even if that value was a result of

a previous perturbation) since our experience has shown that faults frequently infect on each

iteration.
To handle perturbing on each iteration of a location, we de�ne a variant of the previously

de�ned propagation probability; this variant handles the case where a simulated infection is
injected into a variable on every iteration of a location. alP is the probability that 's output

8

di�ers given that the value of variable is perturbed in each data state succeeding location l.

ossible distributions for perturbation functions include all continuous and discrete distri-
butions. To date, we have used a uniform distribution because of our lack of knowledge as to

which distribution is best if \a best" exists. Also, the uniform distribution has given encouraging

results that are presented in x5.

. ersta i t e es lti sti ates

When PIE analysis is completed for the entire program, we have three sets of probability esti-

mates for each program location l in given a particular distribution :

1. Set 1: xecution estimate|the estimate of the probability that program location l is
executed.

2. Set 2: Infection estimates|the estimates of the probabilities, one estimate for each mutant
in l at program location l, that given the program location is executed, the mutant will
adversely a�ect the data state.

3. Set 3: ropagation estimates|the estimates of the probabilities, one estimate for each

live variable at program location l, that given that the variable in the data state following
location l changes, the program output that results changes.

Note that each probability estimate has an associated con�dence interval, given a particular

level of con�dence and the value of used in the algorithms. The computational resources

available when PIE analysis is performed will determine an for each algorithm. For example,

for 95 con�dence, the con�dence interval is approximately 2 (1 �) , where is the

sample mean [21, 8]. Since the s used in the algorithms are expected to be large, 2 (1 �)
will likely be insigni�cant.

It should be noted that PIE analysis is a technique that can su�er from qualitative errors
and thus con�dence intervals play a minor role in any con�dence in the probability estimates.

This is because we are making rough approximations via perturbation functions and mutants.

ur con�dence in the value of these approximations is not a result of 95 or 99 con�dence

intervals, but rather because the approximations have been shown experimentally to often re ect

the e�ect actual faults cause.

. easibilit o le e ti t e Al orit s

The feasibility of PIE analysis as a practical method lies in the ability of the infection analysis
and propagation analysis algorithms to sample internal data states. The sets:

1. lP ix

2. lP ix

3. lPx

4. lPx

5. lP

9

6. lP

are not necessarily recursive, since no algorithm exists that will tell us whether will halt on an
arbitrary input x [26]. The sets, however, may be partially computable, since we can sometimes

�nd a subset of for which halts on each element. (It is unsolvable to decide whether or
not we can �nd such a subset.) Since these theoretical problems can impose serious practical

limitations on PIE analysis, this section describes a mechanism by which infection analysis and

propagation analysis can sometimes get the data states they need even though the above sets
are not necessarily recursive.

It is not possible to determine whether an arbitrary input causes a particular location to be
executed. If possible, the famed halting problem would be solved. ut we can select a speci�c

input, execute the program on the input, and if the program halts in some �xed period of time

that we have preset, we can determine whether the input executed a particular location. Thus
assuming we are able restrict to a �nite subset denoted by by already knowing that each

member of is an input on which halts in some �xed period of time that we set, the sets

1. lP ix; where x

2. lP ix; where x

3. lPx; where x

4. lPx; where x

5. lP , where lP = lPx j x

6. lP , where lP = lPx j x

are recursive. Thus in practice, the algorithms in x3 will need to sample data states from these

six sets. So Step 2 in the infection analysis algorithm is replaced by:

2. niformly select an input x in , and �nd the corresponding lPx in lP . niformly select

a data state from this lPx.

and Step 2 in the propagation analysis algorithm is replaced by:

2. niformly select an input x in , and �nd the corresponding lPx in lP . Set to lP ix.

In practice then, PIE analysis becomes a function of a set of inputs, selected at random according

to , on which halts in a �xed period of time. nfortunately, this means that propagation
estimates and infection estimates may be a function of an input distribution that is far di�erent

than . As already mentioned, this situation may also impact execution estimates if we �nd

that during execution analysis we must restrict the inputs used because some of the inputs

selected according to appear to be causing non-terminating computations.
ur scheme for generating is simple: Set a program execution time limit and sample

inputs according to from . To determine if a particular input x from the inputs should be

in , execute on x and keep account of the time that passes during execution. If the amount

of time used equals the time limit and termination has not occurred, do not include x in . This

does not mean that will not halt on x, but rather that we are not going to wait to �nd out.

10

If halts within the time limit for some x, x is added to . We apply this method for each of
the inputs.

As execution analysis is performed, data states are created from which infection analysis

and propagation analysis could sample if the data states were stored. Assuming that execution

analysis selects inputs on which our program halts in the �xed amount of timementioned earlier,

then execution analysis generates members of lP and lP ; it just does not store them.
If we were able to store the data states that occur during execution analysis, it is not

necessarily the case that we will generate as many data states during execution analysis as the

infection analysis and propagation analysis algorithms need for the desired level of con�dence

in the estimates (See x3.4). Those locations that were infrequently executed during execution

analysis will have few data states stored for them.

For infrequently executed locations, we have 3 options for dealing with the small number of

data states available for infection analysis and propagation analysis:

1. ontinue to execute the program during execution analysis until enough data states are

created.

2. Ignore the location during propagation analysis and infection analysis.

3. Follow a heuristic like orel's [11] for �nding test data that executes the location.

The �rst option is not practical; the second option is practical but limits the information pro-
duced by the technique, and the third option has the potential to bias the resulting estimates
if the heuristic generates inputs that do execute the location but are not in . Therefore, we
consider option 2 as the only practical option.

ecause data states are needed by both infection analysis and propagation analysis, we
recommend that execution analysis be performed before the other algorithms. ven if we cannot
store the data states created during execution analysis, information concerning the costs of
getting a data state during infection analysis and propagation analysis is immediately available

from the execution estimates. In practice, we believe that propagation analysis and infection

analysis is only viable for frequently executed locations.

n iti it n i

The remainder of the paper focuses on making predictions. ur goal is to show how the infor-

mation of PIE analysis can complement software testing.
We say that a fault can more easily hide from software testing when the fault's e�ect on the

computation is di cult to discern. x4 shows (1) how to apply the propagation, infection, and

execution estimates in order to make predictions about where faults can more easily hide and
(2) how to quantify the number of tests necessary to be convinced that a location is not hiding

a fault from detection. Note the shift in emphasis here|from estimation (that PIE analysis

performs) to prediction.
Sensitivity analysis () predicts where faults can hide [12]. Sensitivity analysis uses PIE

analysis's estimates to predict the minimum e�ect on the failure probability that a particular
location would have if a fault were present, i.e., ranks program locations based on their

ability to impact the program's computation.

11

With sensitivity analysis, a framework is created for addressing the following questions: (1)
Where can we get the maximum bene�t from limited testing resources (2) When should we use
another validation technique other than testing (3) What degree of testing must be performed

to persuade ourselves that a location is probably not hiding a fault (4) When should we rewrite

the software in a manner that makes it less likely to hide faults

ensitivity of a location l is a prediction of the minimum probability that a fault in l will
result in a software failure under a particular program input distribution. If location l is assigned
a sensitivity of 1.0 under a particular input distribution , then it is predicted that each input

in that executes l will result in a software failure if l were to contain a fault. If l is assigned a

sensitivity of 0.0 under , then it is predicted that no matter what fault is present in l, no input

in that executes l will cause a failure. (Note that there is a continuum of sensitivities in [0,1].)

The greater the likelihood that a fault in location l will be revealed during testing, the greater

the sensitivity that is assigned to l. A location with a low sensitivity is termed insensitive. A
location with a high sensitivity is termed sensitive.

Testing either reveals or does not reveal faults; quanti�es the signi�cance of testing when
testing reveals no faults. If testing's goal is to estimate the probability of failure, sensitivity is

not an issue. Sensitivity is only an issue when testing's goal is to reveal faults. allows us to

gauge how much trust we can place in testing for faults.
As an example, consider a simple program P:

S IFI ATI N: output 1 if < 900000 else output 0
(1) ea (a);
(2) ea (b);
(3) ea (c);
(4) d := (a) 1000;

(5) e := (b);
(6) f := (c);
(7) if ((d e f) < 900000) he

(8) w i el (\1")

el e

(9) w i el (\0");

P is supposed to perform the function described in the braces but contains a fault in location

4. The fault in location 4 is the addition of 1000 to variable . Assume that testing under
a particular input probability distribution produces no failures. What does this testing say

about the existence of faults in P While we can make predictions about 's probability of
failure under , we do not have any assurances about an absence of faults in P. This is because:

(1) the tests selected from may not execute portions of where the faults (if any) reside, (2)

incorrect data states may not be produced, or (3) incorrect data states may be cancelled.
For , Figure 1(i) and Figure 1(ii) contain input probability distributions that are not likely

to reveal the fault in location 4. If the range of potential input values for variables a, , and c

were �xed in the interval [545, 550], then the fault is more likely to be caught during testing.

would warn that locations 4, 5, and 6 have a greater capacity to hide faults when testing is

performed according to the input probability distributions in Figure 1(i) or Figure 1(ii).

12

Figure 1: robability distributions that are unlikely to reveal a fault at location 4, 5, or 6.

13

PIE analysis's probability estimates for given that Figure 1(i) or Figure 1(ii) were used
follow:

1. xecution analysis reveals that there is a zero probability of a fault existing in locations 4,

5, and 6 and not being executed, and thus produce ^ P = 1:0, ^ P = 1:0, and ^ P = 1:0.

2. Infection analysis reveals that locations 4, 5, and 6 produce high infection estimates,

suggesting that actual faults in the locations would almost certainly produce infections.

3. nlike the high probability estimates of infection analysis and execution analysis, prop-
agation analysis tells something quite di�erent. ropagation analysis will produce low

propagation estimates for variables , e, and f at locations 4, 5, and 6.

apping the probability estimates for a location to a single sensitivity for that location

is di cult, because determining the relative importance for each di�erent set of probability

estimates is di cult. Since each estimate has an associated con�dence interval, we take the lower
bound on the con�dence interval. This assures that if bias occurs when �nding a sensitivity,

the bias causes underestimation of the sensitivity rather than overestimation. This conservative
approach is taken one step further by only considering the minimum of the lower bounds of
the infection estimates and the minimum of the lower bounds of the propagation estimates of a

location when determining the location's sensitivity.
We take the conservative approach because we would rather label a location as \unsafe"

(likely to hide faults) when it is actually \safe" (not likely to hide faults) than to label an unsafe
location as safe. elieving that a location is more capable of revealing a fault when untrue
is the negative e�ect associated with overestimated probability estimates that we mentioned

earlier. This is the reason that a narrower interval is advocated for the perturbation function
parameters|to lessen the likelihood of overestimated propagation estimates.

et (�) i denote the lower bound for the con�dence interval for an estimate, and let (�) ax

denote the upper bound for the con�dence interval for an estimate. The scheme for mapping

PIE analysis's probability estimates into a sensitivity prediction of some location l, denoted by

l, assuming that location l was executed frequently enough to obtain propagation and infection
estimates follows:

l = (l̂P) i � (min
ly

[(^
lylP) i];min

a
[(^ailP) i]) (1)

where

(;) =
� (1 �) if � (1�) > 0

0 otherwise.

quation 1 represents a prediction of the minimum probability that if a fault were to exist

in l, the existence of the fault will be revealed through testing. Note that in equation 1,
mina[(^alP) i] may be substituted for mina[(^ailP) i]. In this equation, we subtract the

minimumproportion of data states that did not propagate when perturbed, i.e., 1�mina[(^ailP) i]
from the proportion of data states, min

ly
[(^

lylP) i], that did cause an infection by mutant

l . We then take the result and multiply multiply it by the lower bound on the execution esti-

mate for the location. This is a very conservative approach to sensitivity|this approach is taken
to avoid the possibility that the data states represented in the proportion min

ly
[(^

lylP) i]

are the data states represented in the proportion (1�mina[(^ailP) i]) [14].

14

For locations that were not frequently executed, and thus did not receive infection or propa-
gation analysis, we cannot directly apply equation 1. We therefore can only warn that these are
locations of high insensitivity, and present the execution estimate as proof of this insensitivity.

With sensitivities in hand, we now return to the four proposed questions and explain how

can begin to answer them.

1. here to get the most bene t from limited testing resources:

Sensitive locations require less testing than insensitive locations. y identifying sensitive

locations, sensitivity analysis saves resources that can be applied to more critical insensitive

locations.

2. hen to use some other validation technique other than testing:

Sensitivity analysis may show extreme insensitivity (greater potential for the hiding of
faults), thereby pinpointing locations for which no reasonable amount of testing under an

assumed distribution can be performed to gain con�dence in such locations' lack of faults.
At such locations, alternative techniques should be applied such as testing under a new

distribution, proofs of correctness, code review, symbolic testing [16, 15, 17, 18, 3], or

exhaustive testing.

3. The degree to which testing must be performed in order to be convinced that a location is

probably not protecting a fault from detection:

Sensitivity analysis results may be used to determined how many test cases are necessary
to be convinced a location is correct with an acceptable con�dence. l can be used as an
estimate of the minimum failure probability for location l in the equation 1� (1� l) =

[6], where is the con�dence that the actual failure probability of location l is less than

l. With this equation, we can obtain the number of tests needed for a particular . To

obtain con�dence that the true failure probability of a location l is less than l given the
sensitivity of the location, we need to conduct tests that execute the location, where

=
ln(1 �)

ln(1� l):
(2)

4. hether or not software should be rewritten:

Sensitivity analysis results may be used as a guide to whether critical software has been
su ciently tested. If a piece of critical software is classi�ed as having many insensitive

locations, then the software may be rejected since too much testing will be required to
achieve a su cient level of con�dence from testing.

n ri nt o rin ti t to i ur

ro i iti

We present evidence here that propagation analysis and execution analysis accurately estimate
the e�ect that faults have on the failure probability of a program.

The experiment proceeds in two stages:

1. We inject a fault into a correct program. We assume a certain input distribution and

establish an estimate of the failure probability of the (now faulty) program via random

15

software testing. For the results shown here, we purposely injected faults with probabilities
of creating data state errors of approximately 1.0 so that the likelihood of low probabilities
of creating data state errors a�ecting the failure probability was negligible. The faults

used were removing an assignment statement or changing an operator in an arithmetic

expression.

2. We perform propagation analysis and execution analysis on the faulty program, and use

the propagation analysis and execution analysis estimates to predict a probability of failure
for the location where we injected the fault.

ur hypothesis is that there will be a signi�cant correlation coe cient between the estimate
of the probability of failure measured by random software testing and the probability of failure

predicted by the estimates of propagation analysis and execution analysis.
The results reported here are based on the gold-version, , of a battle simulation that was

approximately 2000 lines in length and is speci�ed in [23]. The experiment proceeded as follows:

1. ake a copy of , denoted by 0.

2. andomly select some location l of .

3. Inject a fault into 0 at location l.

4. Find �̂ , the failure probability estimate for 0, using random software testing with
distribution .

5. Find l̂ , the execution estimate for location l in 0.

6. Find ^
al , the propagation estimate for location l in 0, where is the variable on the

left-hand side of the assignment statement at l in . The ^
al s are a function of:

(a) A perturbation function producing a uniformly selected value in the interval [0.5x,
1.5x], where x is the value variable had before being perturbed. The ehmer

pseudo-random number generator used is described in [13]. x3.3 tells how we handle
the situation where x = 0.

(b) A uniform program input distribution.

(c) 100 program inputs.

7. o back to step 1.

sing faults with probabilities of creating data state errors of approximately 1.0 allowed us

to calculate the correlation coe cient between (l̂ � ^al) and �̂ (see Table 1 and Table

2 for more speci�c details of the experiment). We multiply the execution estimate and the

propagation estimate because propagation estimates are conditioned on executing a location.

The results presented here used a perturbation function containing a uniform distribution
with (0.5�current value) and (1.5�current value) as parameters; these parameters were chosen

ad hoc to get quick initial feedback on propagation analysis. We are careful when using this

distribution and parameters to make sure that the result is di�erent than current value, and if

current value is originally 0, that we randomly generate a value that is close to 0 but not 0.

16

Although this perturbation function gave encouraging results, the topic of creating perturbation
functions requires more research.

The reason for the success of the uniform(0.5�current value, 1.5�current value) perturbation

function is not completely clear. n possible reason is that the potential values that result from

this distribution are in a narrow interval. We conjecture that the greater the distance between

a correct and incorrect data state value, the greater the probability of propagation; thus a
narrower interval lessens the probability of the propagation estimates being biased upwards.
This conjecture is yet unsubstantiated.

sing the correlation coe cient formula ov
ar ar

, where ov(;) is the covariance of

random variables and , and ar() is the variance of random variable [1], the correlation

coe cient between the probability of failure predicted by propagation analysis and execution
analysis and the estimate of the probability of failure measured by random testing was 0.975 for

the 25 injected faults. As seen in Table 2, trials 9 and 16 caused a large disparity between (l̂ �
^
al) and �̂ . This is because perturbation functions create simulated infections that are

independent of speci�c faults; �̂ is caused by a speci�c fault, ^
al is not. Since perturbation

functions attempt to create internal data state alterations that represent the internal state errors
of many faults, it will sometimes occur that the propagation behavior observed from a speci�c

fault will be di�erent than the propagation behavior resulting from the use of a random number
generator. ven though this is a drawback of this approximation technique, preliminary trials
have suggested that propagation estimates are still frequently accurate. Additional data from
other experiments is currently being collected.

onc udin r

This paper has presented a technique based on the three necessary and su cient conditions for

software to fail. The PIE analysis technique dynamically estimates program characteristics that
a�ect a program's computation. This technique does not need a speci�cation nor oracle and
may be performed on incorrect programs. We believe that the information collected about the
e�ect of individual locations on the program's computational behavior has diverse applications:

including where to emphasize testing resources, the degree of testing resources needed for this

emphasis, and predicting software testability.

lans are underway to automate PIE analysis. As mentioned in x3.5, there are obstacles into

developing such a system, namely creating the sets of data states needed by infection and prop-
agation analysis, and determining semantic equivalence between mutants and the original code.

egardless, a partially automated prototype for programs that requires human intervention

in certain circumstances is currently under development. This system will reduce tremendously

the manual e�ort necessary to complete PIE analysis enormously, allowing PIE analysis to be
applied to larger software systems.

Ac o le e e ts

The author thanks arry orell for his e�orts during the development of these ideas. Appre-

ciation is given to arry orell and eith iller for suggestions made on earlier drafts of this

paper. Appreciation is also given to the anonymous referees for their insightful and invaluable
comments.

17

1 o ission fault issing assign ent

2

o ission fault issing assign ent

o ission fault issing assign ent

o ission fault issing assign ent

o ission fault issing assign ent

o ission fault issing assign ent

o ission fault issing assign ent

o ission fault issing assign ent

o ission fault issing assign ent

10 o ission fault issing assign ent

11 o ission fault issing assign ent

12

o ission fault issing assign ent

1 o ission fault issing assign ent

1 o ission fault issing assign ent

1

o ission fault issing assign ent

1

o ission fault issing assign ent

1

1

1

20

21

22

2

2

2

Table 1: Injected Faults

18

ariable e ecution propagation failure probability

esti ate esti ate esti ate

1 1.0 1.0 1.0 1.0

2 1.0 1.0 0. 1.0

1.0 0. 1.0 0.

1.0 1.0 1.0 1.0

0. 0. 0. 0.

0. 1.0 0. 0.

0. 0.1 0.0 0.1

1.0 0. 1.0 0.

0. 0.0 0.0 0.0 1

10 1.0 0. 1.0 0.

11 1.0 1.0 1.0 1.0

12 1.0 1.0 1.0 1.0

1 1.0 1.0 1.0 1.0

1 0.2 0.0 0.0 0.0

1 0.0 0.0 0.0 0.0

1 0. 0. 21 0.1 0.

1 1.0 1.0 1.0 1.0

1 0. 1.0 0. 0.

1 1.0 0. 1.0 0.

20 0. 0.0 0.0 0.0

21 0. 1.0 0. 0.

22 1.0 1.0 0. 1.0

2 0.1 0. 12 0.0 0.1

2 0.01 1.0 0.01 0.01

2 1.0 0. 0. 0.

Table 2: robability stimates

19

r nc

[1] I F. . n Introduction to pplied Probability. ohn Wiley and Sons Inc., 1979.

[2] . . W . H . From Weak to Strong, ead or Alive An Analysis

of Some utation Testing Issues. Proceedings of the I T IEEE 2nd orkshop

on oftware Testing, nalysis, and eri cation, uly 1988. an�, anada.

[3] . . H . rror ropagation and limination in omputer
rograms. Technical eport T -1065, niversity of aryland, epartment of omputer

Science, uly 1981.

[4] . H . Testing rograms with Finite Sets of ata. omputer ournal,

20(3):232 237, August 1977.

[5] . H . Testing rograms With the Aid of a ompiler. IEEE Transactions on

oftware Engineering, S -3(4):279 290, uly 1977.

[6] . H . robable orrectness Theory. Information Processing etters, pages
17 25, April 1987.

[7] W . H . Weak utation Testing and ompleteness of Test Sets. IEEE Trans-

actions on oftware Engineering, S -8(4):371 379, uly 1982.

[8] A . W. . imulation odeling and nalysis. c raw-Hill
ook ompany, 1982.

[9] . ynamic rogram Slicing. Information Processing etters, ctober 1988.

[10] . AS- rogram rror- ocating Assistant System. IEEE Transactions on

oftware Engineering, S -14(9), September 1988.

[11] . Automated Software Test ata eneration. IEEE Transactions on oftware

Engineering, S -16(9):870 879, August 1990.

[12] redicting Where Faults an Hide From Testing. IEEE

oftware, 8(2), arch 1991.

[13] S . W. . andom Number enerators: ood nes are Hard

to Find. ommunications of the , 31(10):1192 1201, ctober 1988.

[14] Applying Sensitivity Analysis stimates to a inimum Failure
robability for Software Testing. In Proc. of the th Paci c orthwest oftware uality

onf., pages 362 371, ortland, , ctober 1990. aci�c Northwest Software uality
onference, Inc., eaverton, .

[15] . . . A odel for ode- ased Testing Schemes. ifth nnual Paci c orthwest

oftware uality onf., pages 309 326, 1987.

[16] . . . Theoretical Insights into Fault- ased Testing. econd orkshop on oftware

Testing, alidation, and nalysis, pages 45 62, uly 1988.

20

[17] . . . A Theory of Fault- ased Testing. IEEE Transactions on oftware Engineer-

ing, S -16, August 1990.

[18] . A Theory of rror-based Testing. Technical eport T -1395, niversity

of aryland, epartment of omputer Science, April 1984.

[19] A. . . utomatic Test ata eneration. h thesis, epartment of Information

and omputer Science, eorgia Institute of Technology, 1988.

[20] A. . . The oupling �ect: Fact or Fiction. Proceedings of the I T

Third ymposium on oftware Testing, nalysis, and eri cation, ecember 1989. ey

West, F .

[21] S. . . ecture notes on simulation, version 3.0. epartment of omputer Science,

ollege of William and ary in irginia, 1990.

[22] A. . F . S . Hints on Test ata

Selection: Help for the racticing rogrammer. IEEE omputer, 11(4):34 41, April 1978.

[23] T . S . Speci�cation. Technical eport N S S-91-001, omputer
Science epartment, Naval ostgraduate School, onterey, A, ctober 1990.

[24] . . T . The A odel of rror etection and its Application.
Proceedings of the I T IEEE 2nd orkshop on oftware Testing, nalysis,

and eri cation, uly 1988. an�, anada.

[25] . . ynamic ailure odel for Performing Propagation and Infection nalysis on

omputer Programs. h thesis, ollege of William and ary in irginia, arch 1990.

[26] . . W . omputability, omplexity, and anguages: un-

damentals of Theoretical omputer cience. Academic ress, 1983.

[27] S . . Testing for erturbations of rogram Statements. IEEE Transactions on

oftware Engineering, S -9(3):335 346, ay 1983.

21

